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Abstract. Passage retrieval aims to rank a set of passages based on their
relevance to a query. The ColBERT model, which is an efficient yet ef-
fective retrieval model, employs a late interaction approach for relevance
estimation. This approach first independently encodes queries and pas-
sages and then leverages an interaction step to capture the fine-grained
similarities between the queries and the passages. Despite the effective-
ness of this approach, it might have difficulty in fully understanding the
relationships among entities within the queries and the passages, due to
the tokenization of entities into multiple tokens. To this end, we propose
ColLUKE, an entity-aware contextualised late interaction model, to en-
hance the late interaction approach by explicitly leveraging the entity in-
formation. Specifically, we first leverage an entity linking tool to identify
the entities within the queries and the passages. We then use LUKE, an
entity-aware pretrained language model, to independently encode queries
and passages into dense embeddings by taking the corresponding texts
and the entities within the texts as inputs. The dense embeddings are
passed to an interaction function for relevance estimation. We evalu-
ate the performance of our ColLUKE on five different query sets, which
include four in-domain query sets and one out-of-domain query set. Ex-
perimental results show that our ColLUKE outperforms ColBERT by
up to 10.59% on the in-domain TREC DL-HARD query set and up to
11.89% on the out-of-domain HotPotQA query set.
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1 Introduction

The passage retrieval task aims to rank a set of passages from a corpus based on
their relevance to a given query [7]. This retrieval process can help users quickly
identify and access relevant information within a large collection of passages,
making it a crucial component of search engines [4] and various natural lan-
guage processing applications [11, 13]. With the development of pretrained lan-
guage models (PLMs) such as BERT [6] and RoBERTa [19], bi-encoder (dense
retrieval) models that leverage PLMs as the backbone models have gained sig-
nificant attention [41]. These models use PLMs to independently encode queries
and passages into dense embeddings, and estimate the relevance between a query
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and a passage based on the similarity between their corresponding embeddings.
The advantage of bi-encoders is that they allow building the index of the pas-
sages by pre-computing embeddings of all the passages within a corpus [13]. Once
the index is established, bi-encoders leverage the approximate nearest neighbour
(ANN) search [12] to retrieve top-K relevant passages. The late interaction ap-
proach was proposed in ColBERT [14], and enhances over single-representation
bi-encoders by encoding and storing the token-level embeddings of passages at
indexing time using BERT and then employs an interaction step to capture the
fine-grained token-level similarities between queries and passages. The late inter-
action approach offers the advantage of building a corpus index while capturing
the interactions between queries and passages for improved ranking performance.

Despite ColBERT has demonstrated superior performance compared with
other bi-encoders [2, 3], it might have difficulty in fully understanding the rela-
tionships among entities within the queries and the passages [31]. This is due to
the fact that the encoder model in ColBERT, i.e., BERT, employs tokenization
to break down the surface forms of entities into multiple tokens, making it chal-
lenging to capture the semantics of these entities [37]. Therefore, the dense em-
beddings generated by ColBERT may not fully capture the entity-related infor-
mation, leading to sub-optimal ranking performance for queries that require such
entity-level semantic information. Moreover, existing works also show that explic-
itly incorporating the entity information can either improve the recall of sparse
retrieval method [30] or enhance the ranking performance of bi-encoder [31] and
cross-encoder [7]. However, it remains unexplored how to explicitly leverage the
entity information to enhance the late interaction approach.

Therefore, in this paper, we aim to enhance the performance of the late in-
teraction approach by enriching the dense embeddings with entity information
within the queries and the passages. In order to fully understand the entity in-
formation within the texts, we employ a pretrained language model LUKE (Lan-
guage Understanding with Knowledge-based Embedding) [37] as the backbone
model. Compared with vanilla PLMs such as BERT [6], LUKE incorporates an
entity embedding matrix in addition to the token embedding matrix to enhance
the model’s understanding of entities within the texts. Moreover, it leverages
an entity-aware self-attention mechanism to learn entity-aware contextualised
token embeddings. The learned embeddings can capture the semantic relation-
ships among both tokens and entities. In our entity-aware late interaction model,
we first identify the entities within the queries and the passages using a fast end-
to-end entity linking tool ELQ (Entity Linking model for Questions) [16], which
is able to identify the Wikipedia entities within the texts. Subsequently, we use
LUKE to learn entity-aware contextualised token embeddings of queries and
passages by taking the corresponding texts and the entities within the texts as
inputs. Finally, we use the late interaction approach to estimate the relevance
between queries and passages by calculating the maximum similarity (maxsim)
scores of their token embeddings. Since our model is based on LUKE and in-
corporates a late interaction approach, we term our model as ColLUKE. We
train our ColLUKE model on the MS MARCO (Train) [23] and evaluate the
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performance on five different query sets, including four in-domain query sets:
MS MARCO (Dev) [23], TREC DL-2019 [2], TREC DL-2020 [3], TREC DL-
HARD [22] query sets, and one out-of-domain query set: HotPotQA [39]. The
results show that leveraging the entity information can enhance the performance
of the late interaction approach and that our ColLUKE achieves better or com-
parable performance compared with the state-of-the-art ColBERT model.

Our contributions can be summarised as: (1) We propose ColLUKE, an
entity-enhanced late interaction model for the passage retrieval task. (2) Exper-
imental results show that our ColLUKE can outperform ColBERT, which does
not use entity information, by up to 10.59% on the in-domain TREC DL-HARD
query set and up to 11.89% on the out-of-domain HotPotQA query set.

2 Related Work

Neural Ranking Models. Recently, neural ranking models that leverage PLMs
as the backbone models have gained significant attention. Existing neural rank-
ing models for passage retrieval can be roughly divided into two categories:
cross-encoder models [10, 17, 24, 25, 45] and bi-encoder models [13, 14, 21, 36, 42].
Cross-encoders, such as monoBERT [25] and monoT5 [24], take both queries and
passages as inputs and directly output relevance scores between the queries and
the passages using a classifier. Since cross-encoders can capture semantic inter-
actions between queries and passages with the self-attention mechanism, they
achieve state-of-the-art performance on the passage retrieval task [41]. Vanilla
cross-encoders use cross-entropy loss for training, recent works also propose to
use hard negatives [26] or pairwise ranking loss [45] to improve the performance.
One issue with cross-encoders is that they are computationally expensive as they
require combining the sequence of queries and passages as inputs. Therefore, it
is impractical to use cross-encoders to estimate the relevance scores between a
query and all the passages in the corpus. The cross-encoders are usually used
in a re-ranking pipeline, where a set of candidate relevant passages are first re-
trieved with an inexpensive retrieval method such as BM25 [27, 28] and then
these candidate passages are re-ranked using the cross-encoders.

In contrast, bi-encoders models, such as DPR [13] and ANCE [36], are more
computationally efficient. These models learn separate representations for queries
and passages with PLMs, and estimate relevance scores between queries and
passages through the inner product of their contextualised representations [13].
One advantage of bi-encoders is that they allow pre-computing and storing the
embeddings of passages in the corpus, and therefore alleviate the burden of com-
puting passage embeddings during retrieval. Moreover, when coupled with the
ANN search [12], it would be more efficient for bi-encoders to retrieve top-K
relevant passages. However, the performance of bi-encoders is usually not as
good as the cross-encoders since there are no interactions between queries and
passages. To address this issue, the late interaction approach proposed in Col-
BERT [14] first independently encodes queries and passages and then uses an
interaction step to capture the fine-grained similarities between queries and pas-
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sages. The Col* models in [34] extend ColBERT to other PLMs. Compared with
existing late interaction models, our ColLUKE leverages the entity information
within queries and passages to enhance the model’s understanding of queries
and passages, thereby leading to improved ranking performance.

Entity-Enhanced Neural Ranking Models. Entities have been used to en-
hance the performance of some ranking tasks, such as question answering [5,
40, 43, 44], recommendation [32, 33, 38] and entity retrieval [1, 8]. They have also
been used to improve the performance of the passage retrieval task [9, 18, 20,
30, 31, 35]. For example, Gonçalves et al. [9] proposes to combine bag-of-words
(BoW) representations with bag-of-entities (BoE) representations for sparse re-
trieval. Xiong et al. [35] introduces a word-entity duet framework for ad-hoc
retrieval, which utilises word-based and entity-based representations as ranking
features and designs an attention-based model AttR-Duet for retrieval. Liu et
al. [20] extend the work of AttR-Duet and replace the attention-based model
with the interaction-based neural ranking model. Recently, Shehata et al. [30]
propose to incorporate entity information into the sparse retrievers to improve
the recall performance at the first stage of the re-ranking pipeline. Moreover,
the EVA model [31] proposes to enrich the query and passage representations
with the entity information. Specifically, they leverage kernel functions to create
multiple entity representations that reflect different views of a passage, which are
then combined with the token embeddings for relevance estimation. Compared
with previous works, our ColLUKE leverages pretrained entity embeddings and
entity-token cross-attention to enrich the representations of queries and passages.

3 Preliminaries

In this section, we first introduce the task formulation and then introduce the
LUKE model, which serves as the foundation of our proposed ranking model.

Task Formulation. The passage retrieval task aims to rank a set of passages
according to their relevance to a given query. In this paper, we focus on leveraging
the late interaction approach [14] to address this task. Moreover, our goal is to
enhance the performance of the late interaction approach by enriching the dense
embeddings with entity information within the queries and the passages.

Formally, for a query q = {k1, k2, . . . , kn} that contains n words and a passage
p = {w1, w2, . . . , wm} that contains m words, we denote the entities in the query
as eq = {h1, h2, . . . ha} and the entities in the passage as ep = {t1, t2, . . . , tb}.
Given the query and the passage as well as their entities, our goal is to learn an
encoder model to estimate the relevance between them:

Relevance(q, p) = Sim (Encθ(q, eq), Encθ(p, ep)) , (1)

where Encθ(·) denotes the encoder model with parameter θ that outputs the
contextualised token embeddings of the inputs, sim(·) denotes a similarity func-
tion (e.g. inner product). For each query, we calculate the relevance of all the
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passages in the corpus respective to the query using Equation (1). These pas-
sages are then ranked in the descending order of their relevance scores. The
top-K passages are selected as the retrieval results for the given query q.

LUKE Model. In order to effectively leverage the entity information within
texts for passage retrieval, we use the LUKE model as the base model. LUKE is
a bidirectional transformer-based pretrained language model designed for entity-
related natural language tasks [37]. Compared with other PLMs such as BERT [6]
and RoBERTa [19], LUKE additionally uses entities appearing in the text as
inputs, thus enhancing its capacity to handle entity-related information. The
input format of LUKE can be denoted as “[CLS] text [SEP] entities”. Moreover,
LUKE regards an entity, which may contain multiple words such as “United
Kingdom”, as a single entity token and introduces a set of entity embeddings for
these entity tokens. The entity embeddings and the word embeddings are jointly
learned during the pretraining. Since LUKE deals with two types of tokens, i.e.,
words and entities, it also introduces an entity-aware self-attention mechanism
to calculate the attention between tokens of different types. Specifically, the
attention score aij between two token embeddings xi and xj is computed as:

aij =


(Qxi)

⊤
Kxj , if both xi and xj are words

(Qw2exi)
⊤
Kxj , if xi is word and xj is entity

(Qe2wxi)
⊤
Kxj , if xi is entity and xj is word

(Qe2exi)
⊤
Kxj , if both xi and xj are entities

(2)

where Q, Qw2e, Qe2w and Qe2e represent the query matrices between different
types of tokens and K is the key matrix for computing the self-attention.

The pretraining task of LUKE is similar to that of the RoBERTa model,
where it employs the masked language model (MLM), i.e., predicting the masked
tokens in the inputs, to learn the model parameters. In addition to MLM, LUKE
also masks some entity tokens and predicts the masked entity tokens to learn
entity embeddings. The LUKE model is pretrained on an entity-annotated corpus
obtained from Wikipedia [37].

4 Methodology

In this section, we introduce the details of our proposed ColLUKE model. In
general, our ColLUKE first leverages an entity linking tool to identify the enti-
ties within the queries and passages and then uses the LUKE model to encode
queries and passages into dense embeddings, which are passed to an interaction
function for relevance estimation. Figure 1 shows the overview of ColLUKE. We
begin by introducing the entity linking tool to obtain the entities in Section 4.1
and then introduce our entity-enhanced late interaction model in Section 4.2.
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Fig. 1. Overall Framework of our ColLUKE.

4.1 Entity Linking

In order to enrich the dense embeddings with the entity information, we need
to first identify the entities within queries and passages. To achieve this, we em-
ploy a fast end-to-end entity linking model system [16], called ELQ, which is
designed to link entity mentions in a text to their corresponding Wikipedia en-
tities. Specifically, ELQ jointly performs mention detection, i.e., identifying the
mention boundaries of entities within the text, and entity disambiguation, i.e.,
linking the mentions to Wikipedia entities. ELQ also employs a bi-encoder archi-
tecture, comprising two separate encoders: the entity encoder and the question
encoder. First, ELQ leverages the entity encoder to pre-compute the embeddings
for all the Wikipedia entities. The entity encoder uses a BERT model to encode
the surface forms of the entities and their short descriptions. The embeddings
of the [CLS] tokens are considered as the embeddings of their corresponding
entities. Subsequently, given a text, the question encoder also leverages a BERT
model to generate token embeddings. It then employs two linear classifiers to
calculate the probabilities of each token being the start and the end of an entity
mention. After identifying the mention spans within the text, ELQ computes the
embeddings for each mention by averaging the embeddings of tokens within that
mention. Finally, it uses the inner product to measure the similarity between
each mention embedding and all the entity embeddings, ultimately linking each
mention in the text to an entity that exhibits the highest similarity.

We apply the ELQ model to identify the entities for both the queries and
the passages. Moreover, in order to mitigate potential errors caused by the ELQ
model, we introduce a threshold λ to regulate the accuracy of entity linking.
Specifically, we retain the entity linking results only when the similarities be-
tween the mention embeddings and the linked entity embeddings exceed the
predefined threshold λ. Otherwise, if the similarities are below this threshold,
we discard the corresponding entity linking results. This thresholding mechanism
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can help refine the accuracy of the entity linking process. In practice, we set the
threshold λ as 4.5 as we found it consistently achieves satisfactory performance.

4.2 Entity-Enhanced Late Interaction Model

After identifying the entities within the queries and the passages, we encode
each query or passage into contextualised token embeddings. In our model, we
employ a single LUKE model as both the query encoder and the passage encoder
to learn entity-aware dense embeddings.

Query Encoder. Given a query q, we tokenize it into tokens using the LUKE-
based BPE tokenizer [29]. Similar to ColBERT, We add a prefix “[Q]” to the
query to indicate that the current sequence is a query. This prefix is placed right
after the [CLS] token. Moreover, we also leverage the query augmentation method
to expand existing queries. Specifically, when the number of tokens within a
query is fewer than a predefined threshold Nq, we augment it by padding it
with LUKE’s special [MASK] tokens until it reaches the predefined length Nq.
Otherwise, we truncate the tokens and only retain the first Nq tokens. The
padded sequence of query tokens as well as the query entities are then passed
into the LUKE model to compute contextualised token embeddings. Moreover,
our query encoder further passes these token embeddings through a linear layer
without activations. The linear layer aims to control the dimension of query
embeddings. Formally, given a query q = {k1, k2, . . . , kn} with query entities
eq = {h1, h2, . . . , ha}, the query embeddings are computed as:

Eq = Linear (LUKE (“[Q] k1, . . . kn [MASK]...[MASK]” , “h1 . . . ha”)) , (3)

where LUKE(·, ·) denotes the LUKE model that takes both tokens and entities
as inputs and outputs the entity-aware token embeddings.

Passage Encoder. Given a passage p, we tokenize it into tokens and add a
prefix “[D]” right after the [CLS] token to indicate that the current sequence
is a passage. Different from queries, we do not use the [MASK] token to pad
the sequence to a predefined length. The resulting passage tokens as well as the
passage entities are passed through the LUKE model to obtain the contextualised
token embeddings. Similar to the query encoder, we use the same linear layer
to control the dimension of the token embeddings. Formally, given a passage
p = {w1, w2, . . . , wm} and passage entities ep = {t1, t2, . . . , tb}, the passage
embeddings are computed as:

Ep = Linear (LUKE (“[D] w1, . . . wm”, “t1 . . . tb”)) . (4)

Relevance Estimation. After obtaining the query embeddings and the passage
embeddings, we leverage the maximum similarity (Maxsim) function proposed
in [14] to estimate the relevance between a query and a passage:

Relevance(p, q) =
∑

i∈{1,...,|Eq|}

max
j∈{1,...,|Ep|}

E⊤
qiEpj

, (5)
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where |Eq| and |Ep| denote the number of tokens in the query and the passage
respectively. For a given query and a collection of passages, we compute the
maxsim score of each passage with respect to the query using Equation (5) and
then rank these passages based on the maxsim scores in the descending order.
The top-K passages are selected as the relevant passages of the given query.

5 Experimental Setup

In this section, we first introduce the research questions guiding the remainder
of the paper in Section 5.1. Subsequently, we introduce the datasets and the
baselines used in our experiments in Section 5.3 and Section 5.3, respectively.
Finally, we introduce the training and hyperparameter details in Section 5.4.

5.1 Research Questions

We aim to investigate the following research questions: (RQ1): How does the
proposed ColLUKE perform compared with the baselines? (RQ2): Do the en-
tities help to improve the ranking performance? (RQ3): What types of queries
can benefit from our entity-enhanced ColLUKE model?

5.2 Datasets

We use the following datasets in our experiments: (1) MS MARCO Pas-
sage [23]: It is a widely used dataset for the passage retrieval task. The corpus
has around 8.8 million passages. Its training set has approximately 530K (query,
relevant passage) pairs over 503K unique queries. We use the MS MARCO train-
ing set to train our model. Moreover, we also evaluate on its development (Dev)
set, which contains 7,437 query-passage pairs over 6,980 unique queries. (2)
TREC DL-2019/2020 [2, 3]: These two datasets are commonly used test sets
for evaluating the retrieval model’s performance. They share the same corpus
as the MS MARCO Passage dataset but with human-evaluated query-passage
relevance labels. There are 43 queries and 54 queries in the TREC DL-2019 and
DL-2020 datasets, respectively. (3) TREC DL-HARD [22]: This is also a test
set designed to evaluate retrieval models on complex queries. The dataset has 50
queries, where 23 queries come from TREC DL-2019/2020 that are considered
to be challenging, and the other 27 queries are newly and independently assessed
by the authors. (4) HotPotQA [39]: The aforementioned test query sets can be
considered as belonging to the same domain as the training data since they use
the same MS MARCO corpus. To evaluate models’ performance in out-of-domain
scenarios, we develop a new query set from the HotPotQA dataset. HotPotQA is
a question answering dataset where each question requires finding and reasoning
over multiple documents to answer. We use the questions in its test set as the
query set and employ the provided Wikipedia corpus as the retrieval corpus.
Following the DPR [13] setting, we consider a passage being relevant to a ques-
tion if and only if the passage contains the answer to the question. Therefore,
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Table 1. End-to-end retrieval results of our ColLUKE and baselines (* indicates p-
value < 0.05 compared with ColRoBERTa).

Model DL-HARD MS MARCO (Dev) HotPotQA DL-2019 DL-2020

nDCG@10 MRR@10 ACC@10 nDCG@10 nDCG@10

BM25 0.2743 0.1806 0.6017 0.4795 0.4936
ColBERT 0.3633 0.3586 0.6094 0.7066 0.6895
ColRoBERTa 0.3574 0.3511 0.5904 0.6828 0.6640
ColLUKE 0.4018∗ 0.3698∗ 0.6819∗ 0.7047 0.6854

Table 2. Ablation study (* indicate p<0.05 compared with ColLUKE).

Model DL-HARD MS MARCO (Dev) HotPotQA

nDCG@10 MRR@10 ACC@10

ColLUKE 0.4018 0.3698 0.7344
w/o entity 0.3723∗ 0.3514∗ 0.6712∗

append entity 0.3818∗ 0.3586∗ 0.6898∗

in order to evaluate the performance of queries, we exclude questions for which
the answers cannot be found within the corpus. As a result, we obtained 6,502
queries and the corpus has approximately 5.2M passages.

5.3 Baselines

We compare against the following baselines: (1) BM25 [28]: This is a sparse
retrieval model, which estimates relevance based on the term frequency (TF)
and the inverse document frequency (IDF). (2) ColBERT [14]: ColBERT is a
BERT-based late interaction model. It uses a BERT model to encode queries and
passages. (3) ColRoBERTa: The difference between this model and ColBERT is
that it uses a RoBERTa model instead of BERT to encode queries and passages.

5.4 Training and Hyperparameter Details

In our experiments, we use LUKE-base as the encoder model. Following previous
work [13], we use cross entropy loss with in-batch negative sampling to train the
model. We set the maximum length of queries and passages as 32 and 180,
respectively and set the batch size as 32. During training, we use AdamW [15]
with a 1% linearly scheduled warmup as the optimizer. The model is trained
with a learning rate of 5e-6 for 200K steps. We follow the end-to-end ranking
pipeline [14] to evaluate the performance. Specifically, we first build an index
for the corpus and then use the ANN search to retrieve the top-K relevant
passages for each query. Following previous work [25], we report MRR@10 on
the MS MARCO Dev set and nDCG@10 on the TREC DL-2019, DL-2020 and
DL-HARD datasets, which are the official evaluation metrics for these query
sets. For the HotPotQA dataset, we follow the DPR [13] setting and report the
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Table 3. Queries that exhibit improved performance (nDCG@10) when using our
ColLUKE in comparison with ColBERT on the DL-HARD dataset.

Qid Query Entities Improved
315637 how much does it cost to go to alabama university. University of Alabama 0.4608
273695 how long will methadone stay in your system. Methadone 0.2537
527433 types of dysarthria from cerebral palsy Dysarthria, Cerebral palsy 0.2457
174463 dog day afternoon meaning Dog Day Afternoon 0.1512
801118 what is supplemental security income used for Supplemental Security Income 0.1044

Table 4. Queries that exhibit degraded performance (nDCG@10) when using our
ColLUKE in comparison with ColBERT on the DL-HARD dataset.

Qid Query Entities Degraded
177604 eating foods that are considered warm. Food 0.5156
794429 what is sculpture shape space - 0.1911
1056416 who was the highest career passer rating in the nfl Passer rating 0.1696
1103153 who is thomas m cooley - 0.1072
87452 causes of military suicide Suicide attack 0.0276

top-k accuracies (ACC@k), which denotes the percentage of the top-k retrieved
documents that contain the answer. We set k as 10 in our experiments.

6 Results and Analysis

6.1 RQ1: Overall Performance

In order to evaluate the performance of our ColLUKE on the passage retrieval
task, we compare ColLUKE with BM25 and other bi-encoders in an end-to-
end setting. The evaluation results are provided in Table 1, which shows the
performance of different models on different query sets. The results show that
our ColLUKE can achieve the best performance on three out of five datasets:
DL-HARD, MS MARCO Dev set, HotPotQA, and has comparable performance
with the best model on the other two datasets. Moreover, compared with Col-
RoBERTa, which uses a similar RoBERTa backbone as our model, our ColLUKE
achieves significantly better performance on the DL-HARD, MS MARCO Dev
set and HotPotQA datasets. Furthermore, when compared with the best baseline
model, i.e., ColBERT, on the in-domain query sets, our ColLUKE can improve
the performance by 10.59% and 3.12% on the DL-HARD and MS MARCO
Dev set, respectively. Regarding the out-of-domain query set, our ColLUKE
demonstrates performance improvement of 11.89% on the HotPotQA dataset.
Therefore, the experimental results indicate the effectiveness of the proposed
ColLUKE model on the passage retrieval task.

6.2 RQ2: Effect of Entities

In order to examine the effect of entities in our model, we introduce two vari-
ants of our model: (1) w/o entities: In this variant, we remove the entities
within both the queries and the passages and only use the tokens to estimate
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the relevance. (2) append entity: In this variant, we do not use the entity
embedding of the LUKE model. Instead, we simply append the surface forms
of entities at the end of their corresponding mentions. For example, for a query
“how long will methadone stay in your system” with entity “Methadone”, the
input sequence to the encoder is “how long will methadone (Methadone) stay
in your system”. The results of our model and these two variants are provided
in Table 2, which shows their ranking performance on three test query sets:
DL-HARD, MS MARCO Dev set and HotPotQA. The results demonstrate that
our ColLUKE consistently achieves significantly better performance compared
to these two variants on three query sets, which suggests the effectiveness of
incorporating contextualised entity embeddings to enrich the dense embeddings
of queries and passages, resulting in improved ranking performance. Moreover,
when comparing the performance of append entity and w/o entity, the re-
sults show that append entity can achieve slightly better performance on three
query sets. This result indicates that incorporating the surface forms of entities
can also help to improve the ranking performance.

6.3 RQ3: Qualitative Analysis

Finally, we conduct qualitative analysis to understand what types of queries
can benefit from our model. Specifically, we calculate the per-query performance
of our ColLUKE and ColBERT on the DL-HARD dataset. We then investi-
gate the queries that exhibit improved or degraded performance when using our
ColLUKE compared with ColBERT. The improved queries and the degraded
queries on the TREC DL-HARD dataset are provided in Table 3 and Table 4
respectively, which include information about the query, query entities and the
difference in ranking performance between our model and ColBERT on each
query. After a careful examination of these queries, we found that the improved
queries are entity-centric, which means that these queries are focused on seek-
ing specific information related to the identified entities. For example, the query
“how much does it cost to go to alabama university” aims to retrieve information
regarding the tuition fees of the entity “University of Alabama”. Moreover, we
found that for the queries that exhibit degraded performance, the entities are
either incorrectly identified (e.g., Q87452) or missing some or all of them (e.g.,
Q794429, Q1056416, Q1103153). Therefore, the qualitative analysis indicates
that the entity-centric queries can benefit most from our ColLUKE model.

7 Conclusion

In this paper, we propose ColLUKE, an entity-aware late interaction model for
the passage retrieval task. In order to estimate the relevance between a query
and a passage, ColLUKE first use an entity linking tool ELQ to identify the
entities within the query and the passage. Subsequently, it uses LUKE to in-
dependently encode the query and the passage into entity-aware contextualised
token embeddings by taking the texts and the entities within the texts as inputs.
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These token embeddings are then passed to an interaction function to estimate
the relevance between the query and the passage. We train our ColLUKE on the
MS MARCO training set and evaluate its performance on five different query
sets, which include four in-domain query sets and one out-of-domain query set.
The results indicate that incorporating the entity information into dense em-
beddings can improve the performance of the late interaction model and that
our ColLUKE can outperform ColBERT by up to 10.59% on the in-domain
TREC DL-HARD query set and up to 11.89% on the out-of-domain HotPotQA
query set. Our case study also shows that our ColLUKE model could benefit
more for those entity-centric queries, which suggests its potential practicability
in domain-specific (e.g. biomedical) applications.
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